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Abstract. The living brain is physically modeled as a universe, analgous to 

the existing physical model of the universe. While in the physical model the 

gravitation prevails, in the brain universe the electricity prevails, but the 

mathematical description we provide is essentially the same in both cases. What 

is imperiously necessary in this approach is, first, a metric description of matter, 

then, of course, the physical interpretation of this description. These issues were 

treated, in their essentials, in the previous two instalments of the work. The 

object of the present episode of the work is a classical space image of the matter, 

as described from a „central‟ point of view. This image is connected with the 

concept of memory, for which we uphold the idea that in classical physics it has 

a well-known counterpart: the inertia. It is accomplished based on a general 

approach of the motion, suggested by generalizing Kepler‟s classical model of 

motion. 
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1. By Way of Introduction: a Synopsis of Bygone Ideas 

 

The series of works already publishedin this Bulletin [(Mazilu, 2019, 

2020); these articles will be cited here as I and II respectively], or in the course 

of publication from now on, intends to fill an important gap in the physical 

science: a missing physical theory of brain. While any existing physical theory 

connected with this awe-inspiring modern subject of human knowledge is only 

incidental, so to speak, we start from an entirely different point of view, namely 

that the brain is a universe by itself. However, unlike any physical universe ever 

imagined by man, which, as a physical model, is exclusively mass-dominated, 

the universe connected with the description of brain is charge-dominated, at 

least as we can judge on account of the class of nondestructive experiments of 

medical interest. Consequently, this series of works has the task of discerning, 

first, the principles of physical description of a universe in general, and then of 

passing with a theory built on such principles, on to applications to a charge-

dominated universe, particularly to the brain. The essential one among 

principles presented to our knowledge in this enterprise, seems to be that of 

scale transition, of which physics appears to take close notice in its applications 

lately, even to the point of fundamental applications (Nottale, 2011). From this 

point of view, the brain theory can be viewed as a theory of fundamental 

physical particles: both the universe of brain and that of physical particles are 

charge-dominated, even though at different space and time scales. 

While, up to this point, the work has been dedicated to showing the 

technical needs of a cosmological theory in general, in order to serve in 

extracting the essentials in terms of the needs of modelling, starting with this 

episode and going onward, we concentrate on issues specifically connected with 

the brain. And it is even a matter of cursory observation that the basic issue of a 

universe that will explain the existence and overall function of the brain is 

connected with the physical property of the memory. While, due to our specific 

approach of the problem of brain, it is impossible to get over the necessity of 

revealing specific technicalities of a cosmology as usually acknowledged, from 

now on we shall have closer in sight only those mathematical needs that can be 

specifically connected to the physical description of the memory. Going a little 

ahead of us here, we can state, however, that the memory is the physical 

property of any material universe whatsoever. Only, historically speaking, it 

was disguised under different names. In fact, we do not know for sure but only 

about a single such name in physics: the inertia. From this point of view, the 

physics at large can borrow heavily itself, from the theory of brain, in order to 

add something positive,in general, to the existing natural philosophy. 

The main physical point of the previous two contributions of this series 

was, we might say, the natural philosophical concordance of the structure of 

brain as a universe, with a structure of any universe imagined by man. We have 
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insisted much on the two ideas which helped create the modern wave 

mechanics: that of Louis de Broglie and that of Erwin Schrödinger. This 

insistence is explainable by the specific features of our problem: if it is to have a 

„mechanics‟ of the brain universe, this cannot be but a „wave mechanics‟ at the 

most. However, inasmuch as the two fundamental ideas should be involved in 

the cosmology in general, we need to take notice that, in spite of their usual 

presentation, by and largeas antagonistic, there is a point of view from which 

they appear as identical. This is the point of view of scale transition, the one 

from which,contemplated, the wave mechanics itself appears as an essential 

science of the description of any universewhatsoever. This description takes the 

positive form of interpretation, which became the critical issue of the natural 

philosophy connected with the invention of the wave mechanics. And, as we see 

it, the wave mechanics is simply the necessary theory that completes the 

historical steps in the theory of light, culminating with the latter times‟principle 

of asymptotic freedom in the theory of strong interactions. We believe that a 

short review of these historical steps will be beneficial fora proper 

understanding of the picture as a whole, still necessary in a suitable bridging of 

some theoretical gaps. 

 
1.1. Brief History of Perception of the Light Phenomenon 

 

The first physical image of light phenomenon was, we suppose, that of 

Thomas Hobbes: a global concept, as it were, involving the idea of “orb” 

(Hobbes, 1644). It was probably religiously inspired – as, in fact, any natural 

philosophical idea was – byan analogy with the heart. The analogy did not work 

quite properly: everyone whocan see the lightcan eventually get the idea that itis 

expanding only, never contracting, like the heart periodically does in fulfilling 

its job. However, the idea that light is material settled this issue in an 

unexpected way, insofar as, based on it, Robert Hooke placed the periodic 

motion where it should belong, just by a tight logic: it takes place within the 

„orb‟ – read „wave surface of light‟, in view of the later work of Augustin 

Fresnel – otherwise the light would be able destroy the transparent materials it 

penetrates, and such an event has never been noticed in human experience. The 

periodic motion is a „pulse‟, more precisely an “orbicular pulse”, if it is to use 

the Hooke‟s own words (Hooke, 1665). This last concept improves 

kinematically, even thoughit was actually taken mostly dynamically, upon 

Hobbes‟ purely geometrical “line of light”, naturally filling in for the fact of 

expansion, by the idea of propagation of light along a direction. This was just 

about the first case in the Newtonian epoch, whereby the human spirit was 

starting filling the empty ideal world image provided by geometry, with 

properties of the world of human experience. The notorious – and scientifically 

typical, we should say – caseof this start of the classical natural philosophy in 

the epoch is, of course, the triad of Kepler laws, facilitating the invention of 
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forces by Isaac Newton. Properly generalised, this case can still be taken as the 

epitome of such a procedure for any universe whatsoever, particularly for brain. 

The phenomenology of light was limited, at the time of Newtonian 

inventions, to just two specific phenomena: reflection and refraction of light. 

Newton „fortified‟, as it were, this phenomenology technologically (see his 

Opticks), in order to avoid the „invention of hypotheses‟, by creating an 

experimental basis which, under different circumstances of course, works even 

today. However, based exclusively on that phenomenology, and therefore 

abundantly still „inventing hypotheses‟, Hooke created a concept of light ray 

(loc. cit. ante, pp. 53 – 69), in which he incorporated what we think of as the 

first rational theory of colors. In this concept, the color is controlled by the 

angle between orbicular pulse and the mathematical rays delimiting a plane 

construction that can be rightfully called physical ray. It is on this concept, 

originally introduced by Thomas Hobbes, that the experimental basis created by 

Newton helped improve, by adding one important differentia to it, on which we 

have to abide for a while, for it is of essence in what we have to say here. 

Thomas Hobbes insists upon the fact that the physical ray is not a plane figure, 

but a solid one, a cone or a cylinder, or even a more general tube. Quoting: 

PROPOSITION IV 

The ray is a solid space 

Since a ray is the path through which a motion is projected from a 

luminous object and there can be no motion except of a body, it follows 

that a ray is the place of a body and therefore has three dimensions. 

Therefore, a ray is a solid space. 

Definition of direct and refracted rays 

A direct ray is the one whose section by a plane passing through its 

axis, is a parallelogram… 

A refracted ray is the one composed of two direct rays making an 

angle along an intermediate part… 

Definition of the line of light: 

The line where the sides of a ray begin… [(Hobbes, 1644), our 

translation; see also (Shapiro, 1973), and the Portuguese translation of 

Tractatus Opticus in Scientiae Studia, Sao Paulo, Vol. 14(2), pp. 483 – 

526 (2016)]. 

 

The whole classical discussion of optics before Newton is always done 

on that „section by the plane through axis‟, geometrically defining the physical 

ray to Hobbes, where the implicit assumption – no doubtin our opinion – is that 

the „section‟ thus defined is „generic‟: there is no distinguished axial section of 

the ray. Hooke‟s definition of the colors does not satisfy this requirement. This 

was the conclusion of the Newton‟s celebrated, detailed and careful experiments 
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with a prism, or a set of prisms, which proved that the color is a property of 

light, varying indeed directionally, but as a feature of homogeneity of the ray 

[see his Opticks; see also (Shapiro, 1973)]: different homogeneous rays are 

distributed in a certain direction across the spectrum. The theory created by 

Newton extends the experimental observation that different homogeneous rays 

have different refrangibilities, corresponding to different colors, so that the 

homogeneity needs to be further characterized by a specific differentia: the 

color. In other words, from the point of view of the color, the ray geometry 

cannot be plane, as the Hooke‟s theory would imply. In Newton‟s vision, a 

homogeneous ray still satisfies the Hobbes‟ definition, and has to be described 

by a solid geometry: it is a collection of homogeneous rays – the spectrum – 

that only incidentally, i.e. depending on the presence of the prisms, extends 

directionally in the cross-sectional plane. 

It should be illuminating, we believe, especially in understanding the 

concept of physical ray in general, to notice that it was eventually discovered 

that the color must be described by a gauge group acting in the cross-section 

of the ray (Resnikoff, 1974), reproducing a group action of SL(2,R) type, and 

that Erwin Schrödinger pioneered this very discovery (Schrödinger, 1920). 

One can rightfully say that, with the theory of colors he created in 1920, 

Schrödinger was in fact completing an „apprenticeship‟ for the physics which he 

started building six years later (Mazilu et al., 2019). Be it as it may, what we 

think is worth retaining –in the spirit of today‟s physics, of course – from the 

brief history we just presented, is the fact that the epoch of reflection and 

refraction phenomenology produced the concept of a light ray as a tube, having 

the color as a transversal property of homogeneity, described at present by a 

gauge group. 

Along this historical path, Augustin Fresnel started a new epoch in 

phenomenology, marked by the introduction of diffraction of light as a new 

phenomenon, in the description of which the periodic properties of light were 

the usual observables, and thereby the wave nature of light came closer to our 

rational understanding. The obvious spatial periodical pattern in the recordings 

of diffraction phenomena could thus be explained physically, as a mechanical 

interference phenomenon. In so doing, the optics made reference to the 

harmonic oscillator, in order to understand the intensity of light for instance, to 

say nothing of some other physically fundamental necessities, like the very 

definition of the intensity of light. However, this reference is, by stretching a 

little the meaning of words, „illegal‟, to say the least, in the case of light, 

inasmuch as the light phenomenon is a far cry from exhibiting the inertial 

properties required by a proper dynamics of the harmonic oscillator. One can 

even say that this is the deep reason the ideas of Fresnel encountered a firm 

opposition from Laplace and Poisson, who were abiding by the mathematical 

rules of classical dynamics [(Fresnel, 1821, 1826) and the work cited therein]. 

Indeed, as a purely dynamical system, the harmonic oscillator is a system 
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described by forces proportional to displacements (those type of elastic forces, 

used initially by Hooke to explain the behavior of light), and in the case of 

physical optics the second principle of dynamics is quite incidental, as it were. 

It was introduced only by a natural mathematical property of transcendence of 

the second order ordinary differential equation: it describes any type of periodic 

processes. However, the fact is that in the foundations of modern physical 

optics, the periodic processes of diffraction have more to do with the theory of 

statistics than with the classical dynamics (Fresnel, 1827). That much was 

obvious from the very beginnings of the modern optics, and we shall come back 

to these issues here, for the specific case of electric charge. 

This is, however, not to say that the harmonic oscillator is to be 

abandoned altogether, as a model, because this is not the case, either from 

experimental point of view, or even theoretically, as we also will show here in 

due time. All we want to say is that we need to find its right place and form of 

expression in the theory, and those are indicated, again, through the order 

imposed by the measure of things, this time as their mass. Indeed, dynamically 

considered, the second order differential equation,is an expression of the 

principle of inertia, and involves a finite mass. On the other hand, for light the 

mass is practically nonexistent. However, if the second order differential 

equation is imposed by adding the diffraction to the phenomenology of light, 

this means that such an equation actually describes a transcendence between 

finite and infrafinite scales of mass [(Georgescu-Roegen, 1971); for a closer 

description of the concept, one can also consult (Mazilu et al., 2019)]. As, 

again, we shall see later here, the mathematics of scale transitions between finite 

and infrafinite – in our case here, infinitesimal – gauges in a scale relativity, 

fully respects the rules related to the harmonic oscillator model. In fact, the 

whole wave mechanics, as a science, can be constructed based on such rules, 

which appear to be universal. 

Now, along with the settling of Fresnel‟s theory in physical optics, a 

few changes in the natural philosophy have been taking place. First in the order 

of things changed, was making the dynamics „lawful‟, as it were, in the case of 

light. The first step was to identify the phase, mathematically involved as an 

independent variable in the trigonometric functions describing the diffraction in 

the light phenomenon, with the time of an evolution: according to Fresnel‟s 

theory of diffraction, the phase had to be linear in time. A condition which 

brought the frequency front and center, and with it the concept of wavelength, 

thus generating right away a whole new experimental technology of the 

Newtonian kind, leaving nevertheless behind what the dynamical principle 

really needed for a sound physical theory: first, the elastic properties of the 

medium supporting the light and, secondly, the interpretation of light, which 

obviously required the old idea of particle, and therefore the inescapable inertial 

properties. The Fresnel‟s ellipsoid of elasticities pretty much fills in for the first 

aspect of this issue, while the second one was delayed, if not flatly left in 
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suspension ever since, being occasionally replaced with ad hoc creations of 

mind, and so is it, actually, even today to a large extent. A proper dynamical use 

of the second principle of dynamics in the matters of light came in handy only 

later on, with the advent of the electromagnetic theory of light. This theory of 

light has in common with the old Fresnel optics the one equation that models 

the space and time periodical properties no matter of their physical approach, as 

long as these properties are described by a frequency: the D’Alembert equation. 

This was the point where Louis de Broglie entered the stage of light 

physics [(de Broglie, 1926); see I, §2.2]. Based on his association of a wave 

with a material point, which thus became a „wave phenomenon‟, de Broglie 

used the classical concept of light ray, as this was left by Newton and Hooke, 

for an interpretation of the light, according to the precepts of the wave 

mechanics. As we have duly noticed (loc. cit. ante), in the process of 

interpretation de Broglie was obligated to complete the very concept of light ray 

with differentiae above and beyond those introduced by Fresnel, in order to 

prove that the interpretation does not contradict the phenomenon of diffraction 

as perceived by us: the diffraction is a phenomenon that can be described wave-

mechanically, when proper physical interpretation is adopted, or simply 

mechanically, when a proper physics of waves is adopted. In hindsight, one 

must notice that this was, in fact, the whole point of the Fresnel‟s theory, in 

order to be able to rightfully conclude the Huygens‟ global image of light, and 

to overcome the reproaches of Laplace and Poisson. This also bestows a right 

physical character to the optical theory of light, along with the wave-mechanical 

theory of particles. However, the main offspring of this way of physics still 

awaits to be clearly recognized, for, in fact, the de Broglie‟s theory of the light 

ray meant an addition to the very phenomenology of light: there is a fourth 

phenomenon to be added to this phenomenology, and this is the holography (see 

I, §2.3 and §3.4). It came to be recognized as such only much later than the time 

of establishing of the wave mechanics, but only due to a particular manner of 

introduction of the wave function in the process of interpretation, which was 

duly respected by de Broglie on the occasion of his interpretation. 

 
1.2. Specific Task: Addition to the Phenomenology 

 

If one wonders why do we insist so much upon a methodical concept of 

light ray, the answer should not be quite out of hand: as we have shown 

previously (see I, §1.2 and II §§9 & 10), there should be an equivalence 

between a neuron and a light ray. The analogy can be taken even to details: the 

transport of light along a light ray is like the transport of electric charge along 

an axon, or vice versa. From this point of view, viz. of analogy, we can even say 

that the creation of electricity – apparently essential in the case of neuron – 

should be equivalent to the creation of light, an idea that can be turned into a 

basis of physical modeling of the synaptic connection. However, as, again, we 
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have shown in the previous instalments of this work, in our opinion, the main 

point of the physics of brain should be in building a physics based on an idea by 

Karl Pribram, whereby the brain should be holographically modeled (Pribram, 

2007). Only, we have to add that the holography takes here a special concrete 

shape that asks for a wave-mechanical approach of the physics of brain: the 

potential describing a physical structure is everywhere determined by the 

amplitude of the signal propagated along the ray [see I, §2.3, equation (2.19)]. 

And when it comes to the propagation of the charge, this amplitude can only 

described by nonlinear equations of solitonic type (see II, §5) 

 The key of this model of neurons as physical rays, would be, therefore, 

replacing the motion with a solitonic propagation. Indeed, one can hardly 

assume that the transmission of electricity inside the brain can be labeled as a 

motion in the dynamical or kinematical sense of the word. In fact, the economy 

of electricity has to have here a fundamental management existing, apparently, 

in no other universe, at least at the first sight. In other words, the 

phenomenology has to account for a strange phenomenon: the interaction at 

distance between the rays. In optics this property appears as the coherence of 

the rays. This can be best understood from the following words of renowned 

neurologist Karl Lashley, as quoted in the 1998 work of Karl Pribram: 

 

Here is the dilemma. Nerve impulses are transmitted over definite, 

restricted paths in the sensory and motor nerves and in the central 

nervous system from cell to cell through definite intercellular 

connections. Yet all behavior seems to be determined by masses of 

excitations, by the form or relations or proportions of excitation within 

general fields of activity, without regard to particular nerve cells. It is the 

pattern, and not the element that counts. What sort of nervous 

organization might be capable of responding to a pattern of excitation 

without limited specialized paths of conduction? The problem is almost 

universal in the activities of the nervous system and some hypothesis is 

needed to direct further research [(Pribram, 1998); our emphasis]. 

 

We translate this problem as it was suggested in Pribram‟s own work, 

with the benefit of our detailed de Broglie model of ray, turned into a universal 

model: through the brain the impulses are transmitted not only along rays, but 

also from ray to ray when necessary. This aspect of propagation is virtually 

missing in any theory of rays – be it classical or quantal – but is surely felt as 

imperiously necessary in any such theory: it should be, as in the case of light 

itself, the basis of a firm definition of coherence. The connection between the 

brain locations of specific memories seems to depend on such a direct 

connection, independent of the paths of transmission inside the brain. Then, 

what is the relationship between the propagation and coherence? We present 

here a natural mathematical hypothesis, in the spirit of Karl Lashley, „to direct 
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further research‟, and develop, up to a point, its further consequences. Finally, 

among the things necessary to a theory, appears to be the general meaning of 

electromagnetics and its delimitation for the case of brain. It will be shown right 

away that a Yang-Mills generalization of electromagnetism will do, as in the 

case of static fields (see II, §10). This line shall be pursued here, as a gauging 

procedure, thus encompassing the idea that the Yang-Mills fields are able to 

include any properties of the nerve impulses, not only those centered around the 

electrical properties of these impulses (Drukarch et al., 2018). 

The manner Schrödinger introduced his wave function uses, from a 

certain point onward, a variational principle formally identical to that used in 

theoretical physics for introduction of the complex potential in the theory of 

general relativity (Ernst, 1968, 1971). The most general condition defining the 

Ernst potential is that of stationarity of the spacetime metric, which means 

independence of the entries of the metric tensor of spacetime of the time 

coordinate. One can say that this fact is to be taken as the true original 

contribution of the general relativity in the physical explanation of the 

gravitation. Indeed, if the gravitation in general relativity is representable by the 

metric tensor, the property of stationarity means that it is independent of the 

order of events within the space described by this tensor. In this context the 

Carlton Frederick‟s idea that the wave function would have to be found among 

the components of the metric tensor (Frederick, 1976), would mean that the 

wave function, just like the gravitation itself, is independent of any history of 

the events in a given space. 

This last idea is, nevertheless, very old: in fact it has been started by 

Newton himself when he invented his forces. These are the contemporaneous 

expression of the history embodied into a permanent motion, to wit, the Kepler 

motion, which thus can be viewed as an expression of memory, and this is what 

we shall do here. Now, to the extent where we succeeded in documenting this 

conclusion, it was started, from the side of the wave mechanics involved here, 

with the idea of memory,reached, however, „negatively‟ as it were,by Edwin 

Crawford Kemble. Specifically, Kemble has an interpretation of the wave 

function – as this is understood in the wave mechanics, i.e. according to the 

definition of Charles Galton Darwin – for which, however, he was compelled to 

bring on stage the essential characteristic of an ensemble, viz. that of 

randomness (Kemble, 1937): it acts as a history-destroying device, a device that 

classical dynamics missed in its constructions, from obvious reasons, of course. 

Actually, it is this fact that justifies the Schrödinger‟s approach to wave 

mechanics, suggesting it as a natural and universal variant to Newton‟s 

dynamics. And this is, actually,one of the reasons we chose the wave mechanics 

as a universal description, independent of dynamical precepts, for which the 

classical dynamics appears as just a particular case. Quoting from Kemble: 
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Experiment shows that the statistical properties of a large 

assemblage of independent identical microscopic, or macroscopie, 

systems (i.e., a Gibbsian assemblage) which has been “aged” in a 

thermostat at a definite temperature T for a sufficient length of time 

usually become constant and independent of the initial state of the 

assemblage. The ultimate state is then defined to be one of 

thermodynamic equilibrium at the temperature T. By erasing all vestiges 

of the initial state the thermostat acts as a history-destroying device. To 

be sure there are numerous cases in which this function is imperfectly 

performed. In such cases the state of true thermodynamic equilibrium, or 

maximum entropy, is not reached in any measurable time at moderate 

temperatures. We may restrict the discussion for the present, however, to 

systems for which thermodynamic equilibrium is actually attainable 

[(Kemble, 1937), p. 433; our Italics]. 

 

These observations of Edwin C. Kemble regarding the definition of an 

ensemble serving to interpretation, not only accredit the idea that the wave 

function would have to be connected with the metric tensor of the stationary 

gravitation – that, we may add, gets a modern contour by the concept of protective 

measurements in the quantum mechanics (Aharonov et al., 1993) – but even the 

idea that,in the absence of matter, the spacetime itself would have to be stochastic. 

These conclusions will be, by and large, our program of construction of 

the theory of brain. And the obvious first step seems for us an understanding of 

the cosmological perception of the matter. This has two fundamental aspects, 

from a mathematical point of view: the image of space from the perspective of a 

central observer – which is the only perspective the mankind can rightfully 

assume, the rest being just hypothesis – and the manifestation of matter from 

this perspective. These two topics are the object of what follows from the 

present instalment of our work. 

 
2. The Classical Celestial Vault 

 

It is probably worth consideringa little closer a simple observation on 

the scientific findings of the day: the different manners of human perception, be 

it direct or technologicallyassisted, do not indicate, when the concept of matter 

happens to be considered, the same physical propertiesfor the same region of 

space, if perceived from different physical perspectives. To wit, there are, for 

instance, discrepancies between the images of a region of the sky as seen in 

infrared say, and by regular, radio or X-ray telescopes. As these discrepancies 

turn always into paradoxes of our thinking – the missing matter, the dark matter, 

etc – a mathematical expression of the observations seems necessary, because 

the difference in perceptions compels us to a preliminary sound view in order to 

bring up-to-date the identity of the matter in a region of space. 
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The problem is that we hardly can define what „sound view‟ may mean 

in general. However, we always can turn to the usual idea that different 

possibilities of observation are connected to different physical magnitudes that 

characterize the matter: the motion is connected to gravitational mass and 

charges, the light is connected to charges and motion, etc. A „sound view‟, 

therefore, would be a fair mathematical description of the observations from 

different points of view, followed then by a connection of these mathematical 

descriptions, that can explain facts related to different universes at different 

space scales. For the problem in hand – viz. the physics of brain – we have facts 

related to brain, that are gathered by means entirely analogous with the facts 

related to the universe at large: nondestructively. We cannot touch the brain, and 

we cannot touch the universe. From different reasons, is true – touching brain 

would mean destroying it, while touching the universe seems out of question – 

but the fact remains fact. However, we can observe both of them by their 

functionality, inasmuch as they produce something accessible to our 

observation. And, insofaras in the case of the universe at large we have a pretty 

good image of these productions, let us describe them in such a way that the 

space scale may be obvious, in order to see if they do not have an expression of 

existence at different space scales. 

 
2.1. The Geometry from a Point of View Located under the Canopy 

 

The most realistic reference frame one can claim for any kind of 

observation cannot be but a limited portion of the Earth surface. Whether or not 

formally recognized, our experience and,implicitly, its physical explanation, of 

course,was inherently constructed under this universal circumstance. In our 

opinion, this circumstance needs to be taken in consideration in any realistic 

construction of a cosmology, for it influences any image we make of the 

universe. The science of geophysics, for instance, can teach us that the position 

of the reference frame depends on the time of tectonics (see II, §9). This is, 

however, a conclusion that depends heavily on a well-groomed, if we may say 

so, mathematical theory, as the example just cited plainly shows. Historically, 

though, the things went apparently in a simpler way: the realization of vastness 

and eternity of the universe forced us to the direct conclusion that we are 

located in a point in space. It is starting from this idea – heavilycorrupted by 

thinking,of course, for it copiously involves the imagination – that the whole 

science was built. One product of this imagination is the geometry of space, a 

form of which we shall present here, but with the obligation in mind, to fill in 

later for the reality from which it started, which thereby takes a concrete form: 

the idea of finiteness. 

The Euclidean geometry of a three-dimensional space referred to a 

certain point, can be written in the language of position vectors, which, in a 

reference frame with its origin in the point, can be written in the form 
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 𝒓 = 𝑟 ∙ 𝒆 𝑟    (2.1.1) 
 

Here r is a length assigned to the position vector of a point in such a 

reference frame, and êr is the unit vector orienting this length, in order to make a 

vector out of it. Now, in equation (2.1.1) we adopted, in fact, a spherical polar 

coordinate system adapted to the reference frame in which this very equation is 

written. Therefore, in a matrix form, using implicitly a universal Cartesian 

referrence frame, the equation (2.1.1) should be written in the form 
 

 𝒓 = | 𝑥 ≡  
𝑥
𝑦
𝑧
 ; 𝒆 𝑟 ≡  

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑
𝑐𝑜𝑠𝜃

   (2.1.2) 

 

In most of the applications connected to the physics of matter in space, 

like, for instance, in the kinematicalproblems, only the first- and second-order 

symmetric differentials are of importance, ever since the Newtonian natural 

philosophy was instated in science. The first order differential of the position 

vector, which is always „symmetric‟ by its very nature, can be calculated 

directly from (2.1.1), using the usual differentiation rules: 

 𝑑𝒓 =  𝑑𝑟 · 𝒆 𝑟 + 𝑟 ·  𝑑𝒆 𝑟    (2.1.3) 

In order to calculate the differential of the unit vector orienting the 

position vector, we use the second of the definitions in (2.1.2), with the result 

 𝑑𝒆 𝑟 =  𝑑𝜃 · 𝒆 𝜃 + (𝑠𝑖𝑛𝜃𝑑𝜑) · 𝒆 𝜑    (2.1.4) 

where the two new unit vectors from the right hand side here are given by the 

matrices 

 𝒆 𝜃 ≡  
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑
−𝑠𝑖𝑛𝜃

 ; 𝒆 𝜑 ≡  
−𝑠𝑖𝑛𝜑
𝑐𝑜𝑠𝜑

0
    (2.1.5) 

 

These two unit vectors, together with the one defined in (2.1.2) form an 

Euclidean reference frame, referred to spherical polar coordinates, the one in 

which the vector r is defined as the matrix x from equation (2.1.2). Using 

(2.1.4) in (2.1.3), the differential of the position vector becomes: 

 𝑑𝒓 = (𝑑𝑟) · 𝒆 𝑟 +  𝑟𝑑𝜃 · 𝒆 𝜃 + (𝑟𝑠𝑖𝑛𝜃𝑑𝜑) · 𝒆 𝜑    (2.1.6) 

The square of this differential of the position vector is given by the 

inner product: 

 𝑑𝒓 ∙ 𝑑𝒓 = (𝑑𝑟)2 + 𝑟2 𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2 ≡ (𝑑𝑟)2 + 𝑟2(𝑑)2   (2.1.7) 

with an obvious definition for (d)
2
. We recognize here the regular Euclidean 

metric, written in polar spherical coordinates. One can verify the Frenet-Serret 

equations, describing the variation of Euclidean frame of the above unit vectors 

associated with the spherical coordinate system: 
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𝑑𝒆 𝑟
𝑑𝒆 𝜃
𝑑𝒆 𝜑

 =  

0 𝑑𝜃 𝑠𝑖𝑛𝜃𝑑𝜑
−𝑑𝜃 0 𝑐𝑜𝑠𝜃𝑑𝜑

−𝑠𝑖𝑛𝜃𝑑𝜑 −𝑐𝑜𝑠𝜃𝑑𝜑 0
 ∙  

𝒆 𝑟
𝒆 𝜃
𝒆 𝜑

    (2.1.8) 

 

This equation helps in establishing the second symmetric differential of 

the position vector used in calculating the accelerations. Indeed, from equations 

(2.1.6) and (2.1.8) we have, by the rules of differentiation: 
 

 

𝑑2𝒓 =  𝑑2𝑟 − 𝑟𝑑2 · 𝒆 𝑟
+  𝑟𝑑2𝜃 + 2𝑑𝑟𝑑𝜃 − 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜑2 · 𝒆 𝜃  

+(𝑟𝑠𝑖𝑛𝜃𝑑2𝜑 + 2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜑 + 2𝑟𝑐𝑜𝑠𝜃𝑑𝜃𝑑𝜑) · 𝒆 𝜑  

  (2.1.9) 

 

In the system of Newtonian dynamics, this vector represents the 

acceleration if, of course, it is referred to an adequate continuity parameter, 

playing the part of the time of problem. Right now, we do not proceed like that, 

but will discuss the general case of the differentials. However, by abusing a 

little of the classical terminology, the components of the vector (2.1.9) will still 

be designated as „accelerations‟, just as the components of vector (2.1.6) will be 

called „velocities‟. 

 In the case of classical free particle, the components of acceleration 

vanish, a condition that comes down to a system of three differential equations: 
 

 
𝑑2𝑟 − 𝑟𝑑2 = 0 

𝑟𝑑2𝜃 + 2𝑑𝑟𝑑𝜃 − 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜑2 = 0 

𝑟𝑠𝑖𝑛𝜃𝑑2𝜑 + 2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜑 + 2𝑟𝑐𝑜𝑠𝜃𝑑𝜃𝑑𝜑 = 0 

(2.1.10) 

 

This system can be solved by starting with the quadratic form d 
2
, 

which depends only on angles, and is needed in the first of the equations for the 

description of the second differential of the radial coordinate. It satisfies a 

simple differential equation; first, we have by direct differentiation: 

 𝑑 𝑑2 = 2(𝑑𝜃𝑑2𝜃 + 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃𝑑𝜑2 + 𝑠𝑖𝑛2𝜃𝑑𝜑𝑑2𝜑) (2.1.11) 

Now, using here the last two equations from (2.1.10) we can produce the result 

 𝑟𝑑 𝑑2 + 4𝑑𝑟 𝑑2 = 0 (2.1.12) 

and thus we can get a solution for the differential quadratic form d 
2
: 

 𝑑2 =
𝑐4

𝑟4
𝑑𝑡2 (2.1.13) 

Here c
2
 is a constant having the dimensions of anarea rate, so that, if the 

continuity parameter t is time, the whole differential expression from the right 

hand side of this equation should be dimensionless, as the arclength of the unit 

sphere always is. In other words, we just have introduced, apparently only for 
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convenience, the „time parameter‟ t, to be measured by the metric of the unit 

sphere, in common use for expressing the celestial observations. Digressing a 

little: the equation (2.1.13) can be taken in the reverse, in the sense that it 

defines the spherical angle  itself – the continuity parameter on the unit sphere 

– as a time parameter. This is a fact known for ages in human history: the social 

time itself is measured by the positions of stars and orbs on the celestial canopy. 

It is the revision of this time that once triggered what is known as the 

Copernican revolution! 

Now, coming back to geometry, inserting the result (2.1.13) into the 

first equation (2.1.10) we get 

 𝑑2𝑟 =
𝑐4

𝑟3
𝑑𝑡2 (2.1.14) 

 

This equation, most commonly called the Ermakov-Pinney equation in 

physics, can be solved to give the known solution: 

 𝑟2 = 𝐴𝑡2 + 2𝐵𝑡 + 𝐶 (2.1.15) 

with A, B and C constants satisfying to the constraint: 

 𝑐4 ≡ 𝐴𝐶 − 𝐵2 (2.1.16) 

In the words of a classical view: the radial coordinate is the coordinate 

of a classical free particle, provided the Kepler‟s area law is verified. That law 

is crucial: inasmuch as it is verified for the Kepler motion, just the way it is 

verified for a free particle, that would mean that the two are somehow 

equivalent. The concept of interpretation by ensembles of free particles (see I, 

§2.3) indicates thatsuch equivalence should be approached from a wave-

mechanical point of view. However, the concept of „freedom‟ is a lot deeper 

than this first mark of interpretation, and this depth will be obvious as we go 

along with the work. 

 Now, again, a little digression on the previous results seems necessary, 

in order to justify our mention that we have to do here with the area law, and 

also some incidental further proceedings, as far as they may involve stochastic 

or fractal applications. Notice that the equation (2.1.13) is a direct consequence 

of the last two equations (2.1.10). They can be formally integrated as follows: 

first we have them properly arranged in the form of a homogeneous differential 

system having a skew-symmetric matrix 

 𝑑  
𝑟2𝑑𝜃

𝑟2𝑠𝑖𝑛𝜃𝑑𝜑
 =  

0 𝑐𝑜𝑠𝜃𝑑𝜑
−𝑐𝑜𝑠𝜃𝑑𝜑 0

  
𝑟2𝑑𝜃

𝑟2𝑠𝑖𝑛𝜃𝑑𝜑
  (2.1.17) 

which is easier to solve. Indeed, (2.1.17) can be solved by matrix 

exponentiation, with the result 

  
𝑟2𝑑𝜃

𝑟2𝑠𝑖𝑛𝜃𝑑𝜑
 =  

cos(𝑐𝑜𝑠𝜃𝑑𝜑) −sin(𝑐𝑜𝑠𝜃𝑑𝜑)
sin(𝑐𝑜𝑠𝜃𝑑𝜑) cos(𝑐𝑜𝑠𝜃𝑑𝜑)

  
𝑎
𝑏
  (2.1.18) 
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where the constant differentials a and b – that can even be fractals – are 

constrained by the condition: 

 𝑐4 ≡ 𝑎2 + 𝑏2 (2.1.19) 
 

The two differentials in the left hand side of equation (2.1.18) have also 

the meaning of elementary area components on the surface of sphere. Indeed, 

from equations (2.1.1) and (2.1.6) we get: 

 𝒓 × 𝑑𝒓 =  𝑟2𝑑𝜃  𝒆 𝑟 × 𝒆 𝜃 + (𝑟2𝑠𝑖𝑛𝜃𝑑𝜑) 𝒆 𝑟 × 𝒆 𝜑   

Therefore, the elementary area of the unit sphere is actually a vector in 

the plane (, ), having as components the differentials from equation (2.1.18) 

 𝒓 × 𝑑𝒓 = −(𝑟2𝑠𝑖𝑛𝜃𝑑𝜑)𝒆 𝜃 +  𝑟2𝑑𝜃 𝒆 𝜑  (2.1.20) 

Thus our mention of the area law is, indeed, proper in three dimensions 

and has, among others, the form given in (2.1.13). Now, if it comes to 

introducing the dynamics, this can be done here in a classical way. 

 Notice that, according to the precepts of classical mechanics, as long as 

we have to do with central accelerations the last two of the equations (2.1.10) 

should not be affected by anything: it is only the first equation that acquires, for 

instance, a term in the right hand side. Consequently, the integral (2.1.13) 

persists even in this case, but the equation (2.1.14) gets, in its right hand side, an 

expression depending on the magnitude of the applied acceleration. So that 

instead of (2.1.14) we shall have: 

 𝑑2𝑟 − 𝑟𝑑2 = 𝑓 𝒓 𝑑𝑡2 (2.1.21) 

Here t is the time of the problem, as defined before, and f(r) is the 

magnitude of the acceleration impressed according to the second principle of 

dynamics, up to a sign. This is a second-order purely differential equation for 

the magnitude of the position vector, to be solved once we know the magnitude 

of the acceleration. In order to go over to the new time here, we usually take 

notice that the equation (2.1.20), offer the „area constant‟ of the motion by 

relation 

 𝑟2 = 𝑎  (2.1.22) 
 

with an obvious notation for that area, as the rate of area swept by the position 

vector. Using this, (2.1.21) becomes the classical Binet’s equation: 

 𝑢2
𝑑2𝑢

𝑑2 + 𝑢 =
1

𝑎 2
𝑓 𝒓 , 𝑢 𝑟 = 1 (2.1.23) 

Now, that we have established the general mathematical frame of our 

discussion, it is time to appropriate it for an important case that, according to 

some ideas, represents the very action of the inertia. 
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2.2. Freedom According to the Idea of Central Forces 

  

The classical Kepler problem, in its dynamical formulation, meant first 

and foremost a relief of spirit from the grips of classicism embodied in the 

identification of the action at distance with a force. First, it brought into theory 

the concept of field, and this concept is the one that liberated physics from the 

Newtonian burden of regularly evaluating the force with the aid of trajectory of 

motion. However, the idea of trajectory seemed to have been inescapable, 

insofar as, instead of force, the concept of field has brought in the necessity of 

quantization. This was necessary in order to allow for the theoretical description 

of the phenomenology at the microscopic scale of the world, where the light – 

in its electromagnetic stance, of course – would appear to be the defining 

phenomenon. However, even for the classical approach of natural philosophy, 

the concept of field means much more. Two of the essential cases related to the 

idea of centrality, with important impact in the construction of wave mechanics, 

will be presented in this section. They are essential, inasmuch as they constitute 

alternatives to quantization and electromagnetism, and important insofar as they 

offer the only possibility of properly exploiting the concept of interpretation. 

 The classical idea of field started with Poisson‟s equation, correlating 

the field with the existence of matter in space, as described by the Newtonian 

concept of density: 

 ∇2𝑉 𝒓 = 4𝜋𝜌(𝒓)   (2.2.1) 

According to this view, the field offers forces in matter, by the gradient recipe: 

 ∇𝑉 𝒓 = 𝒇(𝒓)   (2.2.2) 

whose source is the concentration of matter as described by density. Apparently, 

this idea was firmly instated in the natural philosophy by Gauss as an 

application of his newly discovered theorem (Gauss, 1842). Now, if in a certain 

position from the universe the existing forces are central, which means that their 

action is only directed radially, then this equation must be written accordingly: 

 ∇𝑉 𝒓 = 𝑓(𝒓)
𝒓

𝑟
   (2.2.3) 

where f(r) is the magnitude of force which realizes the action describing the 

field, up to a sign. This equation can be written as 

 [∇𝑉 𝒓 ]2 = 𝑓2(𝒓)   (2.2.4) 

and allows us to discern a difference between the classical forces of dynamics 

and the forces acting on what we consider the free particle. 

 As well known, in dynamics the idea of free particle was axiomatically 

introduced by Newton (the second principle of dynamics), and thus one of the 

main problems of the classical dynamics was the description of inertia. Now, 
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because by its very definition the classical free particle should not have 

accompaniment of any kind of matter in sight – and by this we understand the 

observation of any kind, even assisted by technology – its inertia was allotted 

by Newton to the absolute space. An allotment that – as by and large well 

known and publicized in physics, but not only there – proved to be quite 

inopportune from the point of view of the concept of field. This induced Ernst 

Mach into a revision of Newton‟s idea, with the consequence that a more 

realistic view was adopted, whereby the matter out of sight should be accepted 

as existent in the universe, and this is the one that controlls the inertia. It is the 

field theory then, that allows us to characterize the inertia as a force produced 

by field. This idea was instated in physics, in a radical way we might say, by a 

natural philosophy leading to the general relativity. However, we shall continue 

here the story along the classical lines. 

 In spherical coordinates at a certain point in space, we can write (2.2.4) 

as 

  ∇𝑉 𝒓  2 ≡  
𝜕𝑉

𝜕𝑟
 

2

+
1

𝑟2
  
𝜕𝑉

𝜕𝜃
 

2

+
1

𝑠𝑖𝑛2𝜃
 
𝜕𝑉

𝜕𝜑
 

2

 = 𝑓2 𝒓    (2.2.5) 

 

If the magnitude of the applied force depends only on the distance 

between particles, as in the case envisioned by Newton, then this equation is 

prone to a solution by separation of variables, as in the classical case of the 

solution of Hamilton-Jacobi equation. Indeed, in that case we can write (2.2.5) 

in the form 

 𝑟2   
𝜕𝑉

𝜕𝑟
 

2

− 𝑓2 𝑟  = −   
𝜕𝑉

𝜕𝜃
 

2

+
1

𝑠𝑖𝑛2𝜃
 
𝜕𝑉

𝜕𝜑
 

2

    (2.2.6) 

and assume tentatively a solution of the form 

 𝑉 𝑟, 𝜃, 𝜑 = 𝑅 𝑟 + 𝐹 𝜃, 𝜑    (2.2.7) 

The equation (2.2.6) can have such a solution if, and only if 

 𝑟2 [𝑅´(𝑟)]2 − 𝑓2 𝑟  = −   
𝜕𝐹

𝜕𝜃
 

2

+
1

𝑠𝑖𝑛2𝜃
 
𝜕𝐹

𝜕𝜑
 

2

 = −𝛽2   (2.2.8) 

where  is a real constant. Thus we must have 

 𝑅´ 𝑟 = ± 𝑓2 𝑟 −
𝛽2

𝑟2
,  

𝜕𝐹

𝜕𝜃
 

2

+
1

𝑠𝑖𝑛2𝜃
 
𝜕𝐹

𝜕𝜑
 

2

= 𝛽2   (2.2.9) 

 The conclusion can be drawn here, that fora field of central forces 

having the magnitude going as the inverse distance between particles, the forces 

can have no radial component: the particles in such a field are „radially free‟ 

with respect to each other. This property defines free particles, indeed, but not 
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from classical point of view. From classical point of view no force whatsoever 

acts on a free particle, in any direction, while here, the particle are free only 

along the line joining them: the forces of magnitude 

 ± [𝑅´ 𝑟 ]2 +
𝛽2

𝑟2
 (2.2.10) 

may have two transversal components, even in the case it has no radial 

component, which occurs if their magnitude is given by 

 𝑓 𝑟 = ±
𝛽

𝑟
 (2.2.11) 

Two historical incidents distinguish this kind of central forces among 

others, one of them connected with the concept of interpretation, the other with 

the concept of wave. In the first case, the forces were eliminated by Maxwell 

from the description of classical ideal gas, on the ground that, being long-

distance forces, they cannot act in an ensemble of material points representing 

an ideal gas in thermodynamical equilibrium [(Maxwell, 1965), Volume II, p. 

422]. Among other things, this elimination led directly to the Planck‟s theory of 

quanta, based on which we tried recently to rehabilitate the forces (2.2.11), 

according to the modern idea of sufficiency in theoretical statistics (Mazilu et 

al., 2020). The second incident concerns the idea of waves in their 

electromagnetic instance. Even from the times of Hooke, light was the epitome 

of lateral action without anapparent accompanying radial one. On the occasion 

of arising of special relativity the scientists were forced to recognize that there 

are two kinds of electromagnetic waves propagating with the speed of light 

[(Langevin, 1905); see also (Poincaré, 1906)]: the „velocity waves‟ and the 

„acceleration waves‟. These are distinguished from one another by the fact that 

they fade away differently: while the velocity waves fade away with the inverse 

of the square of distance, like the Newtonian forces, the acceleration waves fade 

away with the inverse of that distance. In other words, the acceleration waves 

reach further away than the velocity waves, so that Dennis Sciama was tempted 

to put the inertia in their charge (Sciama, 1969), a fact that seems just natural 

under the auspices of general relativity. In the spirit of what we have just 

presented thus far in this work, it is perhaps best to reproduce two of the 

Langevin‟s conclusions in his own words. Quoting, therefore: 

 

1 The electromagnetic perturbation produced in the medium by an 

electrified particle (our Italics here, a/n) in motion is composed of two 

parts that propagate with the speed of light, starting from the emission 

center. 

The first part, or the velocity wave, which exists only in the case of 

rectilinear and uniform motion (our Italics here, a/n), depends only on 
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the velocity of mobile; it contributes in developing around this one a 

wake whose energy varies with the velocity, which therefore contains the 

kinetic energy related to the electrified center, and which accompanies 

this one in its displacement, modifying itself if the motion is accelerated; 

2 This modification is produced through the intermediary of second 

part of the perturbation, the acceleration wave, having at any distance 

from the emission point the properties of transversality and equality of 

the electric and magnetic energies (our Italics here, a/n), which 

correspond to the free radiation. 

This acceleration wave transports at a great distance, where the 

velocity wave becomes negligible (our Italics here, a/n), a finite energy 

proportional to the square of acceleration and increasing indefinitely with 

the velocity when this one approaches that of light. The polarisation 

properties of this wave are particularly simple when the velocity is small. 

The velocity wave does not transport any energy at great distances; 

the energy of the corresponding wake only follows the center in its 

displacement; 

… 

The preceding considerations seem to cast some light on the intimate 

mechanism of the phenomena of inertia and radiation. [(Langevin, 1905); 

our translation, original Italics, except as indicated]. 
 

These old classical conclusions became routine in the modern 

electrodynamics [see (Jackson, 1998), Chapter 14, Eqs. (14.13–14)]. Our 

concern is that, while they can simply be supported by dynamical 

considerations expressed in the field theoretical frame work, as we have 

shown above, they can be also expressed in the language of waves. This, in 

our opinion, is an indication of the compelling necessity of going along with a 

reverse interpretation, as we would like to call the process, whereby from a 

„detached‟ element, like a material point, we need to pass to a continuum 

having the properties of the other detached elements, missing in actuality but 

virtually existent. This, we believe, is the key to a physical theory of the 

memory, and it is by no means specific to brain, but to matter of the universe 

at large: the inertia. 

 For once, let us now discuss the transversal components of the force 

describing the classical field, as given by the second of the equations (2.2.10). It 

can be written as well in a form obviously separable again: 

 𝑠𝑖𝑛2𝜃   
𝜕𝐹

𝜕𝜃
 

2

− 𝛽2 = − 
𝜕𝐹

𝜕𝜑
 

2

= −𝛾2 (2.2.12) 

where is a real constant. Repeating the procedure of separation, we put 

 𝐹 𝜃, 𝜑 = Θ 𝜃 + Φ 𝜑  (2.2.13) 
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so that (2.2.12) splits into two ordinary nonlinear differential equations: 
 

 [Θ(𝜃)]2 = 𝛽2 −
𝛾2

𝑠𝑖𝑛2𝜃
, [Φ 𝜑 ]2 = 𝛾2 (2.2.14) 

 

Thus, we have the general result that the force of magnitude f(r), 

describing a classical field, can be written in the form 
 

 
𝒇 𝒓 =

1

𝑟
 ±  𝑟𝑓 𝑟  2 − 𝛽2 𝒆 𝑟

+
1

𝑠𝑖𝑛𝜃
 ± 𝛽2𝑠𝑖𝑛2𝜃 − 𝛾2𝒆 𝜃 ± 𝛾 · 𝒆 𝜑    

(2.2.15) 

 

where the different combinations of signs in the curly brackets are to be 

conveniently used in case they are needed. For the case from equation (2.2.11) 

this force can be written as 

 𝒇 𝒓 =
1

𝑟𝑠𝑖𝑛𝜃
 ± 𝛽2𝑠𝑖𝑛2𝜃 − 𝛾2 𝒆 𝜃 ± 𝛾 · 𝒆 𝜑   (2.2.16) 

with the same observation. Obviously, the reality of the components of force 

requires definite conditions on the ranges of coordinates, but just for the sake of 

argument we will ignore these for the moment, along with the ambiguity of 

sign, assuming that they are conveniently satisfied. 

 In fact, in order to eliminate any confusion that may appear due to the 

fact that the previous solution of the equation (2.2.5) is incidental, we shall 

assume a general situation of a field generated by a material point, manifest by 

forces in the space surronding it, having no radial component. Therefore, these 

forces are vectors like those from equation (2.2.16), only with some generic 

components: 

 𝒇 𝒓 = 𝑓𝜃 𝒆 𝜃 + 𝑓𝜑 · 𝒆 𝜑  (2.2.17) 
 

The components of this vector can be any real functions of position in 

space, so that we can conduct the mathematics with due generality. The only 

fact that may appear as incidental here is the starting assumption: no radial 

component of such forces. 

  
2.3. The Radial Component of the Forces 

  

We can think of an ensemble of classical material points in equilibrium 

in any direction at any distance: this is an ensemble of material points endowed 

with gravitational mass and charges, electric and magnetic (see II, §§2 & 3). As 

we have shown, this is a fictitious ensemble, inasmuch as any real ensemble of 

material particles endowed with masses and charges cannot be in static 

equilibrium. However, as we also have shown (loc. cit.), the kind of 

nonequilibrium described through Newtonian forces generated by mass and 
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charges is a feature depending on the space scale where we consider the 

nonequilibrium. For instance, at the transfinite scale of space, the gravitation 

dominates and therefore the forces are dominantly attractive, while at an 

infrafinite or finite scale the charges dominate, and the forces are dominantly 

repulsive. Of course, in these cases we think of interpretation in terms of an 

ensemble of identical particles. By the very same token, we are allowed to think 

of an ensemble in equilibrium under Newtonian forces, defined by a condition 

independent of space scale: every particle of the ensemble is stationary, 

inasmuch as it is in equilibrium with any other identical particle, located at any 

distance in any direction. The condition of this equilibrium generates an 

algebraic equation giving us the possibility of a geometrization of the physical 

quantities describing the matter (loc. cit.). The resulting geometry is a Cayleyan 

geometry. 

 We shall call the classical material point of such a fictitious ensemble a 

Hertz material particle, in view of his inventor, who also indicated the scale 

character of the eventual geometry describing such an ensemble and its 

elements. This is a case apparently never taken into consideration by the natural 

philosophy of any persuasion – forgotten at its very birth, if we may say so – 

and which was aroused, the first and only time, by Heinrich Hertz in his 

Principles of Mechanics (Hertz, 2003). Probably, even Hertz himself did not 

know what to do with the concept – the course of his beautiful work follows 

only the mathematical line of presenting the principles of mechanics, „in a new 

form‟, as he says – but the truth is that only the wave and quantum mechanics 

unveiled the true gnoseological capabilities of this concept, all converging 

mostly in the definition of interpretation by Charles Galton Darwin. This turned 

out to be the fundamental concept of physics, and around it, explicitly or 

implicitly, the whole modern physics has been built (Mazilu et al., 2019). The 

best illustrative example is the discussion around the cosmological problem 

started by Einstein in 1917 (Mazilu et al., 2020). It revealed the important 

position of the Einsteinian point of viewin the natural philosophy, and the clear 

difference between this and the old classical Newtonian point of view. It also 

revealed that the two points of view can be „reconciled‟, if we may say so, into a 

general, apparently more realistic, natural philosophy, whereby the wave 

mechanics plays an essential part. As here we just have to pinpoint that part, it 

seems better to start from the very Hertz‟s concept. 

 We reproduce and discuss, for now, only the necessary original 

definitions and commentaries [(Hertz, 2003), pp. 45–46)], keeping in store our 

understanding, to be revealed gradually and, of course, specifically, as we go 

along with our work. Therefore, quoting: 

 

Definition 1. A material particle is a characteristic by which we 

associate without ambiguity a given point in space at a given time with a 

given point in space at any other time. 
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Every material particle is invariable and indestructible. The points 

in space which are denoted at two different times by the same material 

particle, coincide when the times coincide. Rightly understood the 

definition implies this. 

Definition 2. The number of material particles in any space, 

compared with the number of material particles in some chosen space at 

a fixed time, is called mass contained in the first space. 

We may and shall consider the number of material particles in the 

space chosen for comparison to be infinitely great. The mass of the 

separate material particles will therefore, by the definition, be infinitely 

small. The mass in any given space may therefore have any rational or 

irrational value. 

Definition 3. A finite or infinitely small mass, conceived as being 

contained in an infinitely small space, is called a material point. 

A material point therefore consists of any number of material 

particles connected with each other. This number is always to be 

infinitely great: this we attain by supposing the material particles to be of 

a higher order of infinitesimals than those material points which are 

regarded as being of infinitely small mass. The masses of material points, 

and especially the masses of infinitely small material points, may 

therefore bear to one another any rational or irrational ratio (our 

emphasis, n/a). 

 

The trend of progressing of his Mechanics does not seem to indicate 

that Hertz followed a program as outlined in this list of definitions, at least not 

from the points of view later revealed in physics. It seems just normal: the 

reasons listed by Hertz in his Preface to the treatise show that he followed 

mainly the soft spots of the concept of force at that time. This is perhaps the 

reason that the treatise does not play today, as it never did,in fact, the 

foundational part it deserves in our physical knowledge. However, an early 

analysis by Henri Poincaré suggests that Hertz‟s work has to be taken more 

seriously even as it is, for even as such it touches fundamental issues of the 

human knowledge. Quoting: 

 

I insisted on this discussion longer than Hertz himself; I meant to 

show though that Hertz didn‟t simply look for quarrel with Galilei and 

Newton; we must agree to the conclusion that in the framework of the 

classical system it is impossible to give a satisfactory idea for force and 

mass [(Poincaré, 1897); our translation, original emphasis]. 

 

The exquisite analysis of the great scholar, and everyone else‟s ever 

interested in the Mechanics of Hertz, for that matter, does not appear to take due 

notice of the concepts involved in the excerpt above. Fact is that the excerpt, 
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which apparently is referring only to mass, touches actually, even though 

partially and perhaps only implicitly, both of the two fundamental ideas 

mentioned by Poincaré, and with them the objective reasons of the subsequent 

general relativity and wave mechanics. In this respect, two things are worth 

noticing right away, bearing directly on our subject-matter here. 

 The second point of Hertz‟s definitions, which is very important for us, 

is an implicit consideration of the space scale. Namely, in his material particles 

one can easily recognize the classical material points: positions endowed with 

physical properties. In view of our Newtonian definition of the three physical 

properties, such material points cannot be but fictitious. However, a material 

particle to Hertz endows, according to Newtonian view, a position in space not 

only with an identity, a task for which the definition is mainly intended, but 

with an indestructible material „anchor‟, as it were, when that position is in the 

matter. Indeed, it is not too hard to see that, besides being indicator for a point 

in space, such a material particle is, incidentally, the most convenient point of 

application of a force describing the field. And thus itcan also support the third 

principle of dynamics, inasmuch as it is conceived as dimensionless and, more 

than that, “invariable and indestructible”. This fact is crucial for building an 

interpretation. 

 Now, there is a critical difference between a position in space and a 

position in matter: in the first kind of position the particle possesses motion, in 

the last it does not. However, let us recall that, in modeling the reality around us 

we have only the possibility to work with material points in the acceptance of 

Hertz. Indeed, we are aware that a star, for instance, is actually an extended 

body, and only from a distance we see it as a point. Therefore we have to accept 

that a material point is itself a complicated structure, and this fact is duly noted 

in Hertz‟s formalism: the material points are made of material particles! This 

very definition liberates our spirit from the necessity of removing the forces 

from the stage of a physical theory, as the general relativity claimed sometimes 

to have been doing. Indeed, a material particle can support an acting force on it, 

and this acting force is always present with its defining reacting force. In a 

word, in the structure of a material point, a material particle is as „free‟ as it 

gets, given the environment. As a matter of fact, this was entirely Newton‟s 

initial philosophy! 

 There is a subtle point here that unfortunately has not been exploited 

along the time, because of the prevailing concept of vector attached to force. In 

order to reveal it, let us notice that Hertz‟s definitions implicitly show that there 

is a real difference between motion and displacement. This difference enters the 

definition of material point: forces may act on a material point only through its 

constituent material particles. These material particles can only be displaced by 

forces. However the motion may not be a direct consequence of the force as in 

the Newtonian axiomatics. As a matter of fact strange situations may appear 

where the point of application of a force acting on a material point is outside of 
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anyone of the material particles from the constitution of that material point. As 

long as we maintain the geometrical image of vector for a force, like Hertz did, 

we may not have too much of a choice in overcoming this difficulty but to 

define further notions which are “concealed” [(Hertz, 2003), pp. 223–225]. We 

believe that the real lesson to be learned here is that we have to speak, 

generally, of a material point in the sense of Hertz when describing a motion we 

happen to observe, and of material particles in the sense of Hertz when in need 

of properly describing the action of forces that might go along with this motion. 

However, when it comes to describing the force as an effect of motion, we need 

to pay close attention, because some statistics may come into play, as dictated 

by the scale where we contemplate the things. After all, a material point is, first 

and foremost, and ensemble of material particles! And when it comes to 

ensemble, the statistics is most appropriate method to use. An example in point 

follows immediately. 

 Assume an ensemble of Hertz material particles in equilibrium, and 

settle to discuss one of them at random, from a „central‟ point of view. Then 

there is no nonzero component of force along any line joining it with any other 

particle, so that any other particle has a force on it due to the central one, given 

by equation (2.2.17). This force can vary from particle to particle, so that its 

variation acquires a radial component due to the variation of the frame (ê, ê): 

 
𝑑𝒇 𝒓 = −(𝑓𝜃𝑑𝜃 + 𝑓𝜑𝑠𝑖𝑛𝜃𝑑𝜑) 𝒆 𝑟 + (𝑑𝑓𝜃 − 𝑓𝜑𝑐𝑜𝑠𝜃𝑑𝜑)𝒆 𝜃

+ (𝑑𝑓𝜑 + 𝑓𝜃𝑐𝑜𝑠𝜃𝑑𝜑) · 𝒆 𝜑    (2.3.1) 

Here we used the Frenet-Serret equation (2.1.5) for the variation of the 

reference frame (ê, ê). There is a subtle formal point here, that decides the 

statistical character of this expression: if it describes a free particle – the central 

one – this description is done in connection with the other particles of the 

ensemble in static equilibrium with that particle. Therefore, the equation (2.3.1) 

describes an ensemble of biparticles, involving the distance between two 

particles in a reference frame deciding the directions in space. 

 The problem is to construct a reference frame that does not depend on 

the particle, but on the biparticle, in view of the action of force. Such an 

Euclidean reference frame is given by the matrices: 

 

𝒆 1 =  

2 𝑥2 𝑟2  − 1

2 𝑥𝑦 𝑟2  

2 𝑥𝑧 𝑟2  

 ; 𝒆 2 =  

2 𝑥𝑦 𝑟2  

2 𝑦2 𝑟2  − 1

2 𝑦𝑧 𝑟2  

 ; 

 

𝒆 3 =  

2 𝑥𝑧 𝑟2  

2 𝑦𝑧 𝑟2  

2 𝑧2 𝑟2  − 1

  

(2.3.2) 
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One can easily verify the orthonormality of this frame, and the 

important relations that define a position vector r, regardless of its origin: 

 𝒓 · 𝒆 1 = 𝑥, 𝒓 · 𝒆 2 = 𝑦, 𝒓 · 𝒆 3 = 𝑧   (2.3.3) 

Thus, even though the quantities x, y, z may be taken completely 

arbitrarily – provided they are finite, of course – they can be interpreted as 

Euclidean coordinates. We have, for instance, the case of Shpilker coordinates 

(see II, §9), well suited for the de Broglie‟s physics of light ray (see I, §2.2). 

This conclusion has a remarkable connotation: if any Riemannian space – in 

fact, any space – can be discussed in terms of Euclidean reference frames 

(Cartan, 1930, 1931), the equation (2.3.2) provides a suitable reference frame, 

necessary for that description. However, an important precaution must be 

exercised, for usually in the case of the Riemannian geometry describing a 

certain space – such as in the case of matter – such a description must be done 

not in terms of curvature, but in terms of torsion. We shal come to this topic in 

concluding this instalment of our work. 

 For now, going along with the geometrical line of reasoning, the Frenet-

Serret equations for the frame (2.3.2) can be obtained by direct calculations. As 

the procedure involves some calculational features that will be also necessary 

later on, we will describe it briefly here. Notice first that the frame definition 

from equation (2.3.2) involves only coordinates on the unit sphere, relative to 

central particle. These are the components of the unit vector êr from equation 

(2.1.2). We denote these coordinates with , , : 

 𝜉 =
𝑥

𝑟
, 𝜂 =

𝑦

𝑟
, 𝜁 =

𝑧

𝑟
   (2.3.4) 

Their differentials are to be calculated directly from their definition, and are 

given by the formulas 

 
𝑑𝑥

𝑟
= 𝑑𝜉 + 𝜉

𝑑𝑟

𝑟
,
𝑑𝑦

𝑟
= 𝑑𝜂 + 𝜂

𝑑𝑟

𝑟
,
𝑑𝑧

𝑟
= 𝑑𝜁 + 𝜁

𝑑𝑟

𝑟
   (2.3.5) 

Now starting from the definition of the Frenet-Serret matrix entries: 

 𝑗𝑘 = 𝒆 𝑘  𝑑𝒆 𝑗    (2.3.6) 

we find a skew symmetric matrix having the elements 
 

12 ≡ 𝒆 2 𝑑𝒆 1 = 2
𝑥𝑑𝑦 − 𝑦𝑑𝑥

𝑟2
,23 ≡ 𝒆 3 𝑑𝒆 2 = 2

𝑧𝑑𝑦 − 𝑦𝑑𝑧

𝑟2
, 

31 ≡ 𝒆 1 𝑑𝒆 3 = 2
𝑥𝑑𝑧 − 𝑧𝑑𝑥

𝑟2
 

(2.3.7) 

 

In other words, the entries of the Frenet-Serret matrix are components 

of the differential vector representing the elementary spherical angle centered 

on a particle. It should be worth our while writing this infinitesimal vector in 
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terms of the spherical coordinates. We have, using the definition of the spherical 

coordinates, 

 
12 = 2𝑠𝑖𝑛2𝜃𝑑𝜑 

23 = 2𝑠𝑖𝑛𝜑𝑑𝜃 + 𝑠𝑖𝑛2𝜃𝑐𝑜𝑠𝜑𝑑𝜑 

31 = −2𝑐𝑜𝑠𝜑𝑑𝜃 + 𝑠𝑖𝑛2𝜃𝑠𝑖𝑛𝜑𝑑𝜑 

  (2.3.8) 

 

Now, we have to calculate the differential of a vector in this reference 

frame, just as we have done before for the reference frame related to spherical 

coordinates. 

 Thus, let us consider the vector force, whose components with respect 

to the reference frame (2.3.2) are taken as contravariant components: 

 𝒇 𝒓 = 𝑓𝑘  𝒆 𝑘    (2.3.9) 

The differential of this vector is 

 𝑑𝒇 𝒓 = 𝑑𝑓𝑘  𝒆 𝑘 + 𝑓𝑘  𝑑𝒆 𝑘 = (𝑑𝑓𝑘 + 𝑓𝑗𝑗
𝑘) 𝒆 𝑘  (2.3.10) 

where we have used the Frenet-Serret equations for the frame, and arranged 

things so that the superior index to be used in the summation convention is the 

index of the vector which in formula (2.3.6) does not appear under the 

differential operation. Thus, the components of the differential of force can be 

written as 

 𝐷𝑓𝑘 = 𝑑𝑓𝑘 + 𝑓𝑗𝑗
𝑘  (2.3.11) 

 

The same considerations for the components of the position vector, lead to the 

components 

 𝜔𝑘 = −𝑑𝑥𝑘 + 𝑥𝑘
𝑑𝑟

𝑟
, 𝑑𝒓 ≡ 𝜔𝑘𝒆 𝑘  (2.3.12) 

Thus, an elementary work of the force can be written as 

 𝑑𝑊 ≡ 𝒇 𝑑𝒓 ≡ 𝑓𝑘𝜔𝑘  (2.3.13) 

and this is not an exact differential. It is such an exact differential if 

 𝑑 ∧ 𝑑𝑊 ≡ 𝑑𝑓𝑘 ∧ 𝜔𝑘 = 0 (2.3.14) 

which, in view of (2.3.12), comes down to 

  𝑑𝑓𝑘 ∧ 𝑑𝑥𝑘 = 0,   𝑥𝑘𝑑𝑓𝑘 ∧
𝑑𝑟

𝑟
= 0 (2.3.15) 

According to Cartan‟s Lemma, these conditions are equivalent to 

 𝑑𝑓𝑘 = 𝛬𝑚
𝑘 𝑑𝑥𝑚 ,  𝑥𝑘𝑑𝑓𝑘 = 𝛬

𝑑𝑟

𝑟
 (2.3.16) 
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where  is a symmetric matrix and  is a scalar, both of them conveniently 

chosen, and therefore can assume a physical origin. Now, if we describe the 

statistics of forces by the virial of Clausius, i.e. the quantity fr, defined in any 

position of the ensemble (Clausius, 1870), then this quantity should be a 

constant, and therefore its differential should be zero. Thus we need to have 

  𝑓𝑘𝑑𝑥𝑘 + 𝑥𝑘𝑑𝑓𝑘 = 0 (2.3.17) 

or, using (2.3.16) 

 𝑑𝑊 + 𝛬
𝑑𝑟

𝑟
= 0 (2.3.18) 

 

which shows that, if dW is an exact differential it is the differential of the 

logarithm of distance. In the case of transversal forces describing the field of a 

particle, their variation over the ensemble of equilibrium, as described from the 

point of view of an arbitrary particle, is given by the formula (2.3.1), so that we 

have 

 𝒓 𝒅𝒇 = −𝑟 𝑓𝜃𝑑𝜃 + 𝑓𝜑𝑠𝑖𝑛𝜃𝑑𝜑 = 𝛽
𝑑𝑟

𝑟
 (2.3.19) 

where  is a constant, so that 

   𝑓𝜃𝑑𝜃 + 𝑓𝜑𝑠𝑖𝑛𝜃𝑑𝜑 =
𝛽

𝑟
 (2.3.20) 

So, the „celestial mean‟ of a force along a path that goes „in depth‟ from 

a center point, is a logarithmic force: in other words, if from a central point of 

view we have a path of forces deriving from a logarithmic potential then the 

particles are radially free. Such a motion is, for instance the motion of a charge 

in the field of a magnetic pole, which, described dynamically, is a spiral on a 

conical surface (Poincaré, 1896). 

 However, notice that a geodesic on a conical surface may very well 

represent a classical light ray in the sense of de Broglie, and that the equation 

(2.3.20) may represent a mean of the transversal force on an „arc of geodesic‟, 

as it were. These very facts, combined with the one that the quantity in question 

is going with the inverse distance along the ray, recommend the condition 

(2.3.20) as a de Broglie condition of „approaching the particle at constant time‟ 

[see I,§2.2, equation (2.9)]. The noteworthy part in this conjecture is that such a 

condition should be universal, and carry the light‟s property of scale transition, 

for which we need to find the right expression. 

 

3. The Matter Content of the Celestial Vault 

  

There is nothing, indeed, illustrating either the idea of freedom of 

particles, or that of scale transition, in a central point of view, better than the 

case of light. The light was, from the very beginning, interpreted in terms of 
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rays of fictitious free particles, these even having no special name. To Newton 

these particle were acted upon by ponderous matter with forces normal to the 

surface of the matter [(Newton, 1952), pp. 79ff]. To Hooke the motion in orb 

was periodical „short motion‟ [(Hooke, 1665), pp. 55–56]. However, it is hard 

to tell what would be the geometrical expression of this idea of freedom in the 

case of observed matter. One natural suggestion on such a tellingis that this 

geometry must generalize the geometry of that motion that generated the 

Newtonian system of mathematical philosophy: first, the free motion, and then 

the Kepler motion. We believe that this is the case, so much the more as this 

belief is supported by an idea of scale transition. Let us elaborate on these 

observations. 

 In order to illustrate the case, we will describe now the plane 

anharmonic curves, a class of plane curves that comprise the conics, together 

with spirals and a series of other shapes exhibited either implicitly, like the 

Kepler motion, or in the direct observations of the celestial matter. We follow 

here closely the work Nicolae Mihăileanu, which, as its title shows, completes, 

indeed, any course lectures of differential geometry with pertinent applications 

(Mihăileanu, 1972). This author presents the plane anharmonic curves as curves 

having a homographic relation between the slope of their tangent in a point and 

the slope of the secant in that point that passes through a fixed point in plane – 

the pole of the curve. This is a truly scale transcendent relation. 

 
 3.1. Geometrical Description of the Shapes of Matter 

  

Let (u, v) be the plane coordinates in a certain reference frame. 

According to the definition, if v(u) is the function involved in describing the 

anharmonic curve and v′(u) is the slope of the tangent in a point of this curve, 

then the equation of this curve is given by 

 𝑣´ 𝑢 =
𝑎𝑣 + 𝑏𝑢

𝑐𝑣 + 𝑑𝑢
   (3.1.1) 

where a, b, c, d are some coefficients supposed here to be real. The numerical 

characteristics of the 22 matrix: 

 𝒂 ≡  
𝑎 𝑏
𝑐 𝑑

    (3.1.2) 

viz. the fixed points of its homographic action and the eigenvalues of its linear 

action in two dimensions decide the geometrical shape of the curve described by 

equation (3.1.1). This fact is quite obvious from the direct integration of 

equation (3.1.1). Indeed, we can put it in the form: 
 

 −
1

𝑣

𝑑𝑣

𝑑𝜉
=

𝑎𝜉 + 𝑏

𝑐𝜉 𝜉 − 𝜉1  𝜉 − 𝜉2 
, 𝜉 =

𝑣

𝑢
   (3.1.3) 
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where ξ1,2 are the fixed points of the matrix (3.1.2), i.e. the roots of the quadratic 

equation: 

 𝑐𝜉2 +  𝑑 − 𝑎 𝜉 − 𝑏 = 0  
 

Geometrically, these numbers are the slope of the asymptotes of curve 

described by equation (3.1.1). 

 Assuming that the matrix (3.1.2) has distinct eigenvalues, λ1 and λ2 say, 

the result of integration of the equation (3.1.3) is 

 
 𝑣 − 𝜉2𝑢 

𝜆2

 𝑣 − 𝜉1𝑢 
𝜆1

= 𝐾   (3.1.4) 

because the fixed points are distinct along with the eigenvalues, and of the same 

algebraical nature; here K is an integration constant. Accordingly, if the 

eigenvalues are real, the curve thus described by the matrix (3.1.2), i.e. via the 

action (3.1.1), is a real parabola of degree λ1/λ2. On the other hand, if the two 

eigenvalues are complex, so that we can write 

 𝜆1,2 = 𝛼 ± 𝑖𝛽  

the anharmonic curve is a logarithmic spiral that can be considered as the 

projection of a normal logarithmic spiral on some differently oriented plane: 

 𝜌 = 𝐾𝑒−𝑚𝜓    (3.1.5) 

where K is, again, a real constant, and we used the notations 

 𝛽𝜌2 = (𝛽𝑢)2 + (𝑣 − 𝛼𝑢)2; 𝑡𝑎𝑛𝜓 =
𝛽𝑢

𝑣 − 𝛼𝑢
, 𝑚 =

𝑑 + 𝛼𝑐

𝛽𝑐
  

There is one more case, of identical eigenvalues, and therefore identical 

fixed points, where the curve described by matrix a has a unique asymptotic 

direction. Denoting λ, respectively , the two numerical characteristics of the 

matrix, the equation (3.1.3) can be written in the form 

 −
1

𝑣

𝑑𝑣

𝑑𝜉
=

𝑎𝜉 + 𝑏

𝑐𝜉 𝜉 − 𝜇 2
  

which can be integrated directly, with the result 

 𝑙𝑛 𝑣 − 𝜇𝑢 +
𝜆

𝑐

 𝑢 

 𝑣 − 𝜇𝑢 
= 𝐾   (3.1.6) 

where K is the integration constant, assumed real. We have here too a 

projection, but of an exponential curve. 

Summing up, the conics used by Kepler in building his synthesis of 

planetary motion are not the only curves present in the sky. We have also the 

spirals, also present in the sky in the form of galaxies, but unknown to Kepler, 

from which the conics are obtained by making m0 in equation (3.1.5). 
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Moreover, we have some other shapes, given by the equation (3.1.6), that do not 

seem to have celestial correspondents. However, the equation (3.1.6) is the only 

one that may correctly describe the fall toward a center of force, and therefore it 

could faithfully describe a motion of matter proper under the action of 

gravitation: it is the motion involved in accretion of matter. Indeed, the 

equation (3.1.6) can be read in the following way: at great distances from the 

attraction center, a certain body falls directly toward the center following the 

asymptote. It starts gradually departing from the asymptote, so that in close 

range it has a „roundabout‟ motion approaching asymptotically the center of 

force. According to this image the free fall is a reality only at large distances 

from the center of force. Thus, we may say that the Galilei kinematics, for 

instance, is a kind of asymptotic limit of the real kinematics, represented by an 

exponential curve of the type described by equation (3.1.6). As we shall see, 

this allows a precise scaling of the radial distance. Until then, it is time to show, 

in connection with the previous results, why do we insist on the light properties 

in the description of a universe. 

  
3.2. Clasical Results: Necessity of Time 

  

In obtaining the previous results a certain feature of the reasoning is 

manifest and needs to be analyzed in depth: none of the curves thus obtained is 

described parametrically, all of them are gotten implicitly, starting from 

differential forms by integration.The integration is here understood as an 

operation inverse to the operation of differentiation. In order to get these curves 

in a parametric form, we need to introduce a continuity parameter, therefore, in 

physical terms, to introduce the time, and this requires an equation by the means 

of which the time can be quantified. Classically this was the second of the 

Kepler‟s laws. 

 In order to settle the ideas, let us assume explicitly what up to this point 

was tacitly assumed, namely that the elements of the matrix a from the equation 

(3.1.2) are constants: the matrix does not vary. We can then replace the equation 

(3.1.1) by a system of two differential homogeneous equations with respect to a 

continuity parameter, tentatively denoted t in view of the fact that it can, in the 

last resort, represent the time. Let us therefore write (3.1.1) as: 

 𝑑𝑢 =  𝐶𝑣 + 𝐷𝑢  𝜐𝑑𝑡 , 𝑑𝑣 =  𝐴𝑣 + 𝐵𝑢  𝜐𝑑𝑡    (3.2.1) 

where, this time, capitals are used for the coefficients in order to avoid 

confusion with the customary symbol „d‟ of the operation of differentiation, and 

 is an arbitrary parameter of convenience, that may be even variable. The 

equation (3.2.1) makes obvious what we have anounced before, and the 

equation (3.1.1) contains only in a veiled fashion: as the equation (3.2.1) is a 

linear transformation between the finite parameters and their differentials, the 

anharmonic curves are the expression of a transcendence between infrafinite 
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and finite space scales. This observation may not be, technically speaking, too 

much, but it raises an issue of principle. Let us, therefore, digress a little of this 

issue. 

 We insist, once again, on the idea that the light is the only physical 

signal transcending the space scales. This is, after all, the way the physics took 

its modern shape: the signals apparently coming from transfinite spaces are only 

perceived within finite spaces, and the perception is physically explained within 

infrafinite spaces. The legitimacy of this explanation is secured by the fact that 

the cosmic background radiation, for instance, has definitely a Planck spectrum 

(Fixsen et al., 1996), and therefore obeys the Wien displacement law, which is 

an expression of the scale invariance in the physics of light (Mazilu, 2010). 

Now, as we have seen here, the spiral structure revealed by the light we 

perceive from the space at large, can be geometrically explained – see equation 

(3.1.5) – as an anharmonic family of trajectories of some particles, usually 

identified with stars. However, this identification needs to be taken cum grano 

salis, as it were, inasmuch as there are discrepancies between the geometry 

revealed by observations, and any possibility whatsoever of physical 

explanation of the cosmic structures: missing mass, dark matter and the like. 

Nonetheless, if there should be some truth in such an identification, it can only 

be revealed if one asks the question: is the observed celestial structure real, or 

it is only the appearance due to the properties of transcendence of light?! 

Everything in the explanation of the physical universe corresponding to the 

finite space scale decided by the existence of Earth, is pending on the answer to 

this question. It should be, therefore, the hope allowed, that physics of brain will 

open the gate for some answer to this question. 

 Coming back to our mathematics here, the equation (3.2.1) can be 

written in the obvious matrix form: 

  |𝑢  = 𝜐𝒂 |𝑢 ;  |𝑢 =  
𝑢
𝑣
    (3.2.2) 

where a dot over a symbol means time derivative, as usual. If the parameter  is 

also constant or, if variable, can be incorporated into the definition of either 

time or coordinates by a suitable scaling, we can also calculate the second 

derivatives of coordinates with respect to time. These are necessary in order to 

express the fact that the second of the Kepler‟s laws is respected in the form: the 

rate of area variationof the position with respect to the pole of motion is 

constant. Using the equation (3.2.2) this comes down to equation 

  |𝑢  = (𝜐𝒂)2 |𝑢 ≡ 𝒃 |𝑢    (3.2.3) 

Now, the condition that the second of the Kepler laws be satisfied, has a precise 

formulation: 

 𝑣𝑢 − 𝑢𝑣 = 0   (3.2.4) 
 

which, using the equation (3.2.3), becomes 
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 𝑏12𝑣
2 +  𝑏11 − 𝑏22 𝑢𝑣 − 𝑏21𝑢

2 = 0  

independently of u and v. This tells us that the matrix b must be the 22 identity 

matrix, up to an arbitrary factor. By choosing, if allowed, the factor μ 

appropriately, we can determine the matrix a such that its square is the identity 

matrix up to a sign: 

 𝒂2 = 𝟏  

According to Hamilton-Cayley theorem, this means that a must have a null 

trace, and unit determinant up to sign. In suggestive notations for the entries of 

a, we can write it as: 

 𝑎 =  
−𝑎12 −𝑎22

𝑎11 𝑎12
 ≡  

0 −1
1 0

   
𝑎11 𝑎12

𝑎12 𝑎22
   

Thus the equation (3.2.2) can be written as an exact differential 

  𝑎11𝑢 + 𝑎12𝑣 𝑑𝑢 + (𝑎12𝑢 + 𝑎22𝑣)𝑑𝑣 = 0   (3.2.5) 

so that it can be integrated by inverse differentiation: 

 𝑎11𝑢
2 + 2𝑎12𝑢𝑣 + 𝑎22𝑣

2 = 𝐾   (3.2.6) 

Here K is a new constant, introduced by integration procedure. In this case, the 

motion described by the differential equation (3.2.5) is a Hamiltonian motion, 

for which the quadratic form (3.2.6) is the very Hamiltonian, and also provides 

a conservation law. The coordinates u and v have now a precise meaning: they 

are the coordinates of motion with respect to the center of orbit described by 

equation (3.2.6). We thus have the important result that in order to have the area 

law satisfied, in a „universal manner‟ as it were, whereby the area constant is 

not specified, the celestial orbits must be conics. Inasmuch as the second of the 

Kepler laws may not be satisfied for them, we are entitled to say that the 

anharmonic motions generalize the classical planetary Kepler motions. 

Consequently they can be taken as an essential step in construction of a 

necessary modern synthesis that generalizes the classical Keplerian one, and can 

serve the modern physics the way the Keplerian synthesis served the classical 

physics. 

 
4. By Way of Conclusions: Cartan’s Geometrical Philosophy 

 

Let us repeat again: we aim to accomplish the idea that the living brain 

should be physically modeled as a universe. The analogy goes, if properly 

caried, to details: the constitutive unit of the brain universe matter – the neuron 

– should handle the charges just like the constitutive unit of the matter of the 

common universe – the planetary model – namely in the manner the rays of 

light handle their constitutive particles: photons, luxons, etc. The problem is: 

what are these constitutive particles for the case of matter? The answer was 
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presented here by Hertz‟s material particles: fictitious classical material points, 

endowed with physical properties of gravitational mass, electric charges and 

magnetic charges, allowing us to interpret the matter by ensembles in static 

equilibrium due to the forces commonly associated as vectors with these 

physical features. 

 The matter of brain is like the matter of usual universe, or of any 

universe actually. However, we owe the reader an explanation, because the 

question can arise: why should we insist in describing the matter of celestial 

vault? What is the point of analogy it serves?! From physical point of view, we 

should not forget the experience by any means. In the case of brain this 

experience is represented mainly by a phenomenology of neurological 

extraction, and when it cames to experiments, these are only experiments of 

nondestructive nature, involving the electric and magnetic properties of the 

brain. So, we can „see‟ the brain exactly as we see the universe at large: by 

some „windows‟ opened for us through the very structure of the universe. And 

in this last case, the windows are the celestial matter formations just described 

above. The analogy means that here the external observation of brain should be 

physically modelled just as we model the light coming from celestial objects, 

and the devices of this observation should function accordingly. The problem is 

why Euclidean reference frames? Knowing that these are, geometrically 

speaking, only extremely special reference frames, can they be in any way 

connected to the essence of any physical problem at all? 

 The concept of interpretation raises quite a significant concern, in 

hindsight even critical, which tends to show up especially if we forget about 

that objective connotation that Schrödinger assigned to his wave function, the 

one involving the idea of a „charge cloud‟ (Schrödinger, 1920). Incidentally, we 

have to recognize, though, that such an interpretation is, in fact, the largest level 

of acceptance ever possible, inasmuch as it includes, as only a particular case, 

that experimental level invoked by Darwin in defining the concept of 

interpretation (see I, §2.3), a fact that shall be obvious as we go along with our 

work. The concern we are expressing by the virtual questions raised above, is 

conspicuous, if we may say so, and comes with that notable dichotomy 

regarding the problem of space, which we have only mentioned above, but, 

nevertheless, needs to be pinpointed as such. That dichotomy actually 

confounds the whole human knowledge of all times – no matter if natural 

philosophical, purely philosophical or simply technical in general – being, in 

fact, unrecognized as such even today. It is the difference between what is 

philosophically accepted as „the ordinary space‟, and what is scientifically 

accepted as „the coordinate space‟. Quoting, again, Charles Galton Darwin: 

 

 In dealing with the interpretation we have touched on one of the 

great difficulties which have made it hard to gain physical insight into the 

wave theory. This is the fact that the wave equation is not in ordinary 
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space, but in a co-ordinate space, and the question arises how this co-

ordinate space is to be transcribed into ordinary space. It would appear 

that most of the difficulty has arisen from an attempt to apply it 

illegitimately to enclosed systems, which are really outside the idea of 

space. In most of the problems we shall discuss the question hardly 

arises, but where it does the correct procedure is so obvious that there is 

no need to deal with it in advance. It is tempting to believe that this will 

be found to be always the case [(Darwin, 1927); our emphasis]. 

 
It is „tempting‟, indeed, to assume that the problem will not pop up, but 

the evolution of physics proved that the case is quite contrary: Darwin was way 

too optimistic! We „need to deal with this issue in advance‟, indeed: more 

precisely even before we start anything physical, just because the very existence 

of wave mechanics and quantum mechanics is conditional on the measurement. 

A first step is to write the Schrödinger equation in the ordinary space, and this 

cannot be done but only an equation for free particles, within a holographic 

universe [see I, §2.3, equation (2.19)]. 

 Indeed, it would appear from the above excerpts from Darwin‟s work, 

that the idea of coordinate space is intimately connected with that of enclosed 

physical systems, which is „outside‟, as it were, of the space concept derived 

from our intuition, viz. a particular form of ordinary space. However, inasmuch 

as, physically speaking, we have always to deal only with „enclosed systems‟, 

we need either to bring the „ordinary space‟ under this concept of coordinate 

space, or to bring this last concept under that of ordinary space. This is to be 

done here, as everywhere in physics for that matter, with the aid of two 

instruments: a clock, to regularize our perception of one physical body, and a 

coordinate system, to regularize our perception of many physical bodies. These 

are the two essential features – or differentiae, using a philosophical label – of a 

general concept of reference frame. The whole physics is built around this 

concept, and what we have to say here makes no exception. 

 Fact is that the Euclidean reference frame defined by us in the equation 

(2.3.2) is by no means special from a physical perspective. On the contrary, we 

have to accept that it is the most general reference frame serving any physical 

purpose. It was the great geometer Élie Cartan who specially insisted upon this 

aspect of Euclidean reference frames, brought to light by his approach of the 

differential geometry (Cartan, 2001). However, the issue of description of space 

is way deeper, mostly if this space is filled with matter. Then it becomes 

physical, a kind of coordinate spaces mentioned by Darwin in the excerpt 

above. This incident asks for some arbitrariness, and here is an excerpt from 

Cartan,„gauging‟ this arbitrariness, if we may say so, with reference frames by 

absolute parallelism: 
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… It is easy to realize the most general way to define an absolute 

parallelism in a given Riemannian space. Attach, indeed, to the different 

points of this space rectangular reference systems, or frames, and this 

according to an arbitrary law; it is then sufficient to agree that two 

vectors of any origins A and B are parallel, or better equipollents, if they 

have the same projections along the axes of reference systems of origins 

A and B; these reference systems will be then parallel themselves. There 

are, therefore, in a given Riemannian space, an infinity of possible 

absolute parallelisms, for the law according to which one attaches a 

rectangular frame to a point in space is completely arbitrary; however, 

we must notice that if all the rectangular frames are rotated in the same 

way around their origins, one gets the same absolute parallelism; 

therefore, one can define once and for all the frame attached to a 

particular point in space [(Cartan, 1931); our translation and Italics; see 

also (Delphenich, 2011), pp. 202 – 211]. 

 
Therefore, attaching a reference frame is, indeed, according to Cartan, a 

matter of gauging: „define once and for all the frame attached to a particular 

point‟. However, it is quite noticeable that this frame should be taken as 

„rectangular‟ in order to avoid further arbitrariness, so that the gauging is 

merely related to the orthogonal group. This kind of reference frame epitomizes 

the concept of coordinate space, by the classical „box locating‟ of a position: as 

we have seen, it is sufficient to have any three numbers in order to construct an 

Euclidean reference frame as in equation (2.3.2), and then to orient this 

reference frame by parallelism. In spite of this particular choice of the frame, 

the Cartan definition of the absolute parallelism still remains the most general 

one by comparison with the definition by continuity [see (Levi-Civita, 1916)] 

and, what is more important, it is the only one closer to a physical spirit of 

definition, especially when it comes to theoretical statistical or stochastic 

processes calculations. Indeed, the case appears to be one of a kind, both among 

the ideas of Élie Cartan himself and those of differential geometry in general. 

As far as we are aware, this idea of definition of parallelism cannot be found, 

either in his previous works, or in the works following the one just cited, at least 

not in such an unequivocal form of expression. 

 One can say that the previous excerpt defines the absolute parallelism 

by a „mnemonic scheme‟: the components of a vector, „recorded‟ somehow on a 

memory, are reproduced by orthogonal projections in each and every one of the 

frames attached to positions in space according to an arbitrary, but specified, 

rule. In such a situation, one can say that the frames are also parallel. We find 

this approach to geometry closer to the spirit of modern physics, insofar as, first 

of all, it contains the suggestion that the definition of the frame parallelism in a 

given space depends on the existence of a memory, and the possibility of 
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transmitting the information within that space. Given the fact that the classical 

inertia can be ascribed to the general idea of memory, one can realize the 

overwhelming importance of this conclusion. Secondly, Cartan‟s definition 

admits an important „reciprocal‟: we can define a class of parallel frames, once 

we have at our disposal three numbers physically representing the components 

of a vector. We already presented an important example concerning the most 

important mechanism of transmitting information in space: the propagation of 

light – of a signal in general – which is the universal carrier of information in 

the known universe (see II, §9). 

 For now, let us go further into this manner of building the geometry, by 

showing that it is genuinely related to the definition of torsion. On that unique 

occasion, Élie Cartan insisted upon the feasibility of what, following his 

wording, we like to call an „Euclidean mentality‟ which obviously leads to 

abandoning the idea of curvature, as its name would imply, but brings instead 

the torsion to the fore. According to Cartan, the torsion is contained in some 

kind of indecision of the vector representation in a Riemanian space and that in 

anentirely natural manner, as far as the Euclidean mentality is involved. 

Quoting: 

 

 It is known that in the usual geometry the coordinates of a point M 

referred to a system of rectangular axes of origin O, are the projections of 

the vector OM        along these axes; we can still get them joining O and M by 

a broken line, and then taking the sum of the projections of different parts 

of this line. One can even take a curved line, considered as a limit of a 

broken line. Now, imagine an observer located in a Riemannian space 

with absolute parallelism, having however an Euclidean mentality. If this 

observer, placed in O and adopting a system of rectangular axes of origin 

O, wants to calculate the coordinates which he must assign to a point M 

(our Italics), he will join O with M by a continuous line, and will proceed 

as we just have shown: he will consider the line OM as a geometric sum 

of a very large number of minute vectors; he will transport them in O 

parallel with themselves, and then will take their geometric sum: thus he 

will find a vector of origin O, which he will consider as equipollent to the 

line OM, and whose projections upon axes shall be the coordinates he 

sought for (our Italics). If the observer joins O and M by another line, he 

will be led to consider it as equipollent to a second vector, which 

generally will not be the same with the first vector. In other words, the 

different lines joining O and M are not all equipollent to the same vector. 

 The issues can be presented yet another way. If in the Euclidean 

geometry one considers a closed contour, or cycle C, pursued in a certain 

direction, it is equipollent to a null vector, according to a fundamental 

theorem of the vector calculus; in a Riemannian space with absolute 

parallelism this is no more the case: the cycle C is equipollent to a certain 
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vector, which we shall call torsion vector. Only in the Euclidean space 

we will have, for all cycles, null torsion vector [(Cartan, 1931); our 

translation, Italics in the original, except as mentioned; see also 

(Delphenich, 2011), loc. cit.]. 

 
As an observation connected to this definition of the torsion, we have 

the concept of matter that can emerge from a quotidian example: that of the 

Earth as a planet. First, let us apply the above idea of Cartan to an operational 

definition of the vertical direction on Earth surface accessible to our regular 

displacements. This, of course, will get us some unit vectors to be represented 

as points on the unit sphere. With any three of these directions, we can construct 

an estimator of the position of center of Earth, viz. the point toward which the 

force of weight of earthly bodies presumably acts. This center is, nonetheless, 

never unique, but varies within a region inside the Earth, to which we never 

have access, for the space itself has never access there. According to Cartan‟s 

idea this region has a finite extension which can be given by a torsion vector. In 

general, the matter of Earth‟s nucleus – even more general, of a spatially 

extendedparticle – is described by the torsion vector. In physics, this idea made 

its way only in our times (Delphenich, 2013), and it is related to a concept of 

density able to properly generalize the Newtonian concept in order to allow for 

a scale transition physical theory of the universes. 
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PRINCIPII FIZICE ÎN EVIDENȚIEREA MECANISMELOR DE 

 FUNCȚIONARE A CREIERULUI. PARTEA A III-A 

 

(Rezumat) 

 

În prezenta lucrare creierul este modelat fizic ca un univers, analog 

cosmologiilor standard. În timp ce în modelul fizic domină gravitaţia, în universul 

creierului domină electromagnetismul, descrierea matematică în cele două cazuri fiind 

asemănătoare. Apelând la descrierea metrică a materiei, se tratează imaginea spaţiului 

clasic în strânsă corelaţie cu memoria creierului, toate acestea fiind fundamentate pe 

baza conceptului de inerţie. 
 


